The State Museum, State Library and State Archives are temporarily Closed.

On the Origin of Tunnel Valleys of the Saginaw Lobe of the Laurentide Ice Sheet; Michigan, USA

TitleOn the Origin of Tunnel Valleys of the Saginaw Lobe of the Laurentide Ice Sheet; Michigan, USA
Publication TypeJournal Article
Year of Publication2013
AuthorsKehew, AE, Ewald, SK, Esch, JM, Kozlowski, AL
JournalBoreas
Volume42
Pagination442-462
Keywordsgeology
Abstract

Tunnel valleys are common throughout the terrain of the Saginaw Lobe of the Laurentide Ice Sheet in southern Michigan. The set of valleys described in this paper is regularly spaced in a radial pattern behind the Kalamazoo Moraine, an ice-marginal position formed during retreat from the Last Glacial Maximum. These valleys are divided into proximal and distal groups lying north and south, respectively, of a major river valley that cross-cuts the tunnel valleys at right angles. Based on a series of rotasonic borings and core analysis, the proximal valleys are shallow, contain minimal sediment fill, and overlie fine-grained diamicton and glaciolacustrine sediment, whereas the distal valleys are deeply incised into the substrate and are partially filled with coarse sediment. The distal valleys terminate within a broad zone of high-relief, hummocky topography representing stagnation and collapse behind the Kalamazoo ice margin. The proximal valleys occur within a more subdued landscape located farther from the ice margin. Although some elements of existing genetic models are consistent with these valleys, none appears to be completely compatible with their stratigraphy and morphology. Initial incision of the valleys could have involved short-lived moderate- to high-discharge flows, followed by deposition during or after the events. The deep incision and thick, coarse sediment in distal valleys in the stagnant marginal zone probably involved supraglacial meltwater draining to the bed as the margin downwasted. Fining-upward eskers inset into the valleys were formed by flows of declining energy in small late-stage conduits.

URLhttp://dx.doi.org/10.1111/j.1502-3885.2012.00295.x
DOI10.1111/j.1502-3885.2012.00295.x