New York State Geological Survey

SURFICIAL GEOLOGY OF THE FISHS EDDY 7.5-MINUTE QUADRANGLE, DELAWARE COUNTY, NEW YORK

Universal Transverse Mercator, Zone 18 N North American Datum of 1983

Hygrology, and planimetry layers from the

Delaware County

NYS 10-meter lidar data sets (http://gis.ny.gov/elevation/index.cfm

New York State DOT Raster Quadrangle separates for

http://www.ngdc.noaa.gov/geomag-web/#declination

(https://gis.ny.gov/gisdata/inventories/member.cfm?OrganizationID=108). Geographic data layers from 2018 TIGER/Line shapes for transportation nd hydrograpghy (https://www.census.gov/cgi-bin/geo/shapefiles/index.php)

Shaded relief from 2007 FEMA Delaware-Sullivan 3-meter and the

Magnetic declination from the NOAA online Declination Calculator:

James R. Leone and Karl J. Backhaus

CONTOUR INTERVAL: 10 FEE

SURFICIAL GEOLOGY OF THE FISHS EDDY 7.5-MINUTE QUADRANGLE, DELAWARE COUNTY, NEW YORK

prepared by Jamers R. Leone and Karl J. Backhaus

Supported in part by the National Park Service Task Agreement Number P15AC01482 in the year 2015.

The geology of the Fishs Eddy 7.5-minute Quadrangle was mapped during 2016 and 2017 as part of the National Parks Service Task Agreement P15AC01482 for Geologic Mapping of the Upper Delaware Scenic and Recreational River (UDSRR). This map is part of Phase I of the mapping project in Delaware and Sullivan Counties, New York. The purpose of this map was to identify and delineate various geologic formations in the Fishs Eddy Quadrangle with the intent that this information can guide the National Parks Service and municipalities in land use, environmental, and natural resource decisions. The Fishs Eddy Quadrangle is within the Southern Tier Region of New York near the state border with Pennsylvania. The Town of Hancock is the only municipality that makes up the quadrangle and includes the hamlets of Fishs Eddy, Peas Eddy, and French Woods. The quadrangle is mainly wooded with large tracts of land for lumber and recreation. Bluestone mining is another major land uses in the quadrangle and surrounding area.

Situated at the western edge of the Catskill Mountain physiographic province the landscape varies from floodplain in the Delaware River Valleys to mountainous topography. The highest elevation is at 2,257 feet, or 688 meters, above mean sea level (amsl) in the northeastern portion of the quadrangle with the lowest elevation being 869 feet, or 265 meters, in Bouchoux Brook a creek that flows into the main branch of the Delaware River. The sediments found in the quadrangle includes sand, gravel, diamicton (till) and bedrock exposed throughout the

The portions of the Fishs Eddy Quadrangle within the boundaries of the UDSRR, consist primarily of exposed bedrock, till over rock, and alluvium on the floor of the Delaware River Valley. The topography of the Fishs Eddy Quadrangle while still being mountainous and rugged to the north, is noticeably subdued in the southern portion somewhat defined by a west to east orientation of small lakes, ponds and wetlands. Some summits and hill slopes have exposed bedrock and the lower hill tops are covered with till. There are also valleys that have deposits of sand and gravel along the walls. A New York City Water Supply investigation drilled several borings in Peas Eddy on a large meander of the East Branch of the Delaware River. It was determined that the site was not feasible for dam construction, but the geology here shows a considerable amount of till over lake sediments with the longest boring reaching over 300 feet.

Clastic Upper Devonian rocks make up virtually all bedrock in this region. These shales, mudstones, fine to coarse sandstone were observed in the area. There is some quartz pebble conglomerate beds and there is a possibility to have localized lacustrine carbonate beds (Ver Straeten, 2013). Multiple cycles and similar facies, that cover 25 million years, make this area difficult to correlate without spending great amounts of time exclusively mapping the bedrock. Extensive geophysical, geochemical, and fossil identification would need to be carried out to create a comprehensive bedrock map of the region. The age of the rocks spans the Frasnian stage, ~385 million year ago (Ma) to ~360 Ma. In that time, this region was an expansive coastline with a complex river system, transporting massive amounts of sediment coming from the ancestral Acadian Mountains, which occupied present day eastern New England

Field mapping for this quadrangle was completed from late 2015 through 2017. Mapping efforts included traversing the quadrangles primarily by vehicle along roadways, with some mapping taking place on private land. Sample collection was taken by pick and shovel from outcrops in drainage ditches, road and streams cuts or within quarry/sand and gravel pits. Sample collection was also taken with a two-meter long hand auger to collect samples below the soil layer where possible. A total of 109 observation points were made during the mapping process, with 41 samples collected for grain size analysis. Twelve Geoprobe samples were collected along Dirig Road.

Water wells (7 in total) and oil and gas boreholes (6 in total) from the Department of Environmental Conservation, and engineering borings (17 in total) by the Department of Transportation were also used to decipher the subsurface geology of the Fishs Eddy Quadrangle. The subsurface data from these wells were simplified using the drillers descriptions to more standard and uniform descriptions. The location, thickness and depths of all lithologies were also recorded and used to create cross-sections and 3D borings logs within the quadrangle.

Field data were digitized in ArcMap 10.6. Polygons were created based upon the lithology of the surface material and the sample and boring locations were plotted. The boring logs and map data were created using the Adobe Illustrator CS6 using the data created in the ArcMap

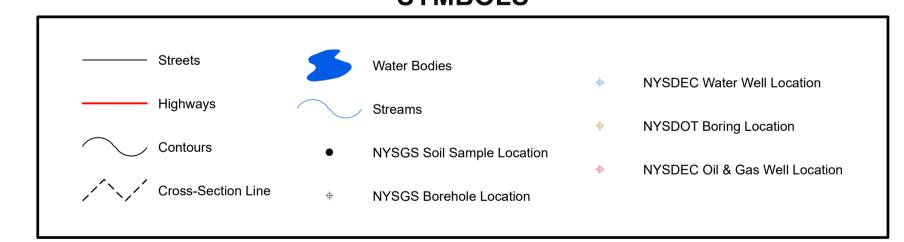
Artificial Fill (Af) This material is primarily noted in the large bluestone quarry in the western section of the map. This lithology is generally composed of coarse/fine, large cement mounds and/or crushed rock anthropogenically transported and used for construction purposes.

Holocene Alluvium (Ha) and Holocene Wetland Deposits (Hw)

Post glacial sediments occupy the low areas or land depression throughout the quadrangle. Ha is associated with fluvial process in areas along the three sections of the Delaware River and its tributaries. This lithology generally consists of stratified silt, sand, and gravel. Hw is associated with low areas and depressions in the highlands of the quadrangle where wetlands form due to poor drainage. This lithology consists of peat, marl, clay or sand in these areas of poor drainage.

Diamict Colluvium (Hdc)

Unsorted and unstratified deposit of gravel, sand, silt, clay, with boulders/cobbles possible. Described as a mass-wasting deposit at the base of steep hillslopes and cliffs as part of a slump or hillslope failure. A small portion of a meander in the East Branch of the Delaware has been identified as slope failure.


Pleistocene Sand and Gravel (Psg)

Characterized as well-sorted and stratified sand and gravel this unit is interpreted to be deposited by glacial meltwater at or very near the glacier and can be found several meters in elevation higher than the present-day river valley floors. Psg is found within the valleys of the East Branch of the Delaware River and its tributaries.

Pleistocene Diamicton (Pd)

This unit is a mixture of sediment grains that range from clay to boulders in size. In this quadrangle, all diamicton in interpreted to be glacial till, sediment deposited directly beneath the glacier. This material is found throughout much of the quadrangle covering most valley floors in the uplands, hillsides of the taller mountains, and hilltops of the smaller hills. It is generally matrix supported, sand-dominant, and tan and

SYMBOLS

Summary and Discussion

The Fishs Eddy Quadrangle located in the New York State's Southern Tier on the western edge of the Catskill Mountains. The region is like the surrounding Catskill Mountains with greenish blue to dark grey sandstones with zones of crossbedding, and red shales of the Devonian Period Catskill Delta making up the bedrock of the mountains. The light brown to reddish brown diamicton, till, is deposited along the slopes of the mountain sides, many of the shorter hilltops are till covered as well. Sand and gravel deposits in the form of kame terraces and hummocks is found in the East Branch of the Delaware River and its tributaries in the northern half of the quadran-

Holocene

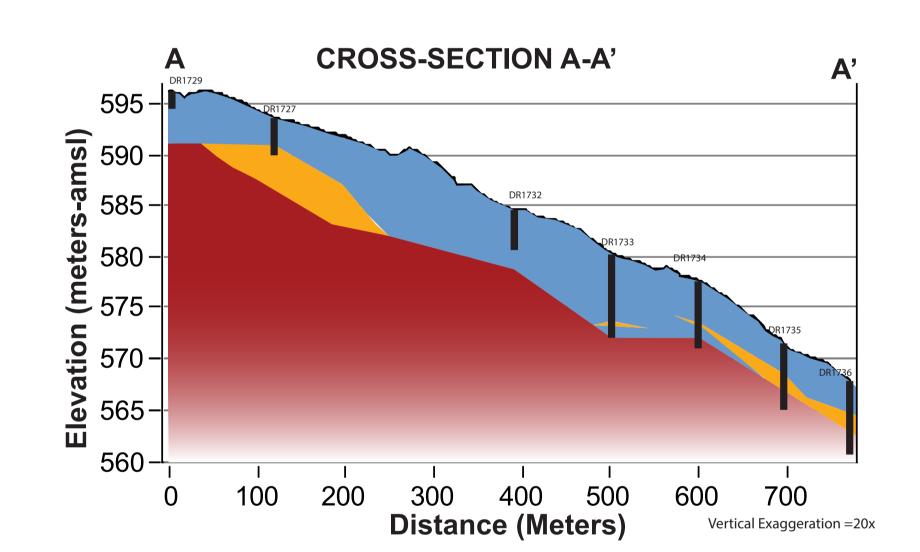
Fletcher, F. W., 1964, Middle and Upper Devonian Stratigraphy of Southeastern New York, Doctoral Dissertation, The University of

Gubitosa, M., 1984, Glacial geology of the Hancock area, western Catskills, New York, Master's Thesis, SUNY at Binghamton, p.71 Kirkland, J.T., 1979. Deglaciation events in the western Catskill Mountains, New York. Geological Society of America Bulletin, 90(6), pp. 521-524.

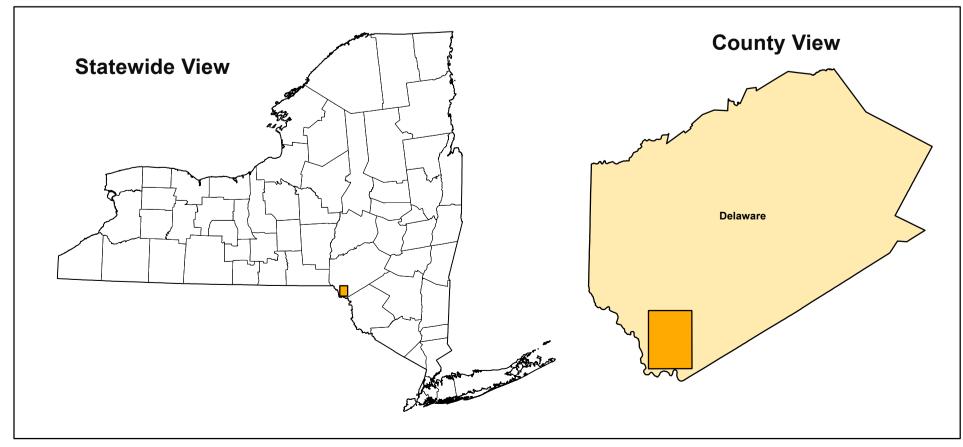
Ozsvath, D. L. and Coats, D. R., 1896, Woodfordian Stratigraphy in the Western Catskill Mountains, The Wisconsinan Stage of the First Geological District, Eastern New York Part 1, New York State Museum Bulletin 455, pp.109-120

Rich, J.L 1935, Glacial Geology of the Catskills. New York State Museum Bulletin, 299, p.180

Soren, J., 1961, The ground-water resources of Sullivan County, New York: New York Water Resources Comm. Bull. GW-46, p.66 Soren, J., 1961, The ground-water resources of Delaware County, New York: New York Water Resources Comm. Bull. GW-50, p. 67 Ver Straeten, C. A., 2013, Beneath It All: Bedrock Geology of the Catskill Mountains and Implications of its Weathering, Annals of the New York Academy of Science, v1298, p.29

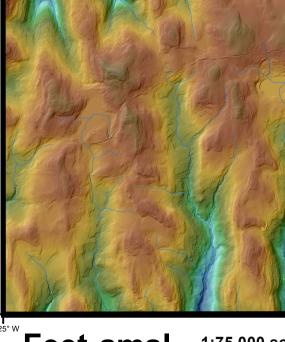

DESCRIPTION OF MAP UNITS

Af	Artifical Fill (Af) Surficial sediment composed of coarse/fine and or crushed rock anthropogenically transported and used for construction purposes.
На	Stratified silt, sand and gravel (Ha) Sorted and stratified silt, sand, and gravel, deposited by rivers and streams. May include cobbles and boulders. Inferred as post-glacial alluvium and includes modern channel, over-bank and fan deposits
Hw	Wetland Deposit (Hw) Peat, muck, marl, silt, clay or sand deposited in association with wetland environments. Various sediments can be present at transitional boundaries from one facies to another
Pleistocene	
Ps	Stratified Sand (Ps) Well sorted and stratified sand, deposited by fluvial, lacustrine or eolian processes. Inferred as deposits associated with distal glacial environments.
Psg	Stratified sand and gravel (Psg) Well-sorted and stratified sand and gravel. May include cobbles and boulders. Inferred to be delta, fan or lag deposits in glacial channels or near former ice margins.


Pre-Pleistocene

Non-glacially derived, hard rock, pre-pleistocene in age. May be covered up to a meter in diamicton, sand and gravel, or sand and clay

An admixture of unsorted sediment ranging from clay to boulders. Generally matrix supported, massive and clast-rich.



QUADRANGLE LOCATION

ADJOINING QUADRANGLES

1:75,000 scale; 2x vertical exaggeration Feet-ams Shaded relief generated from 2007 Delaware & Sullivan Counties 3-meter lidar data set by the Federal Emergency Management Agency. 2270

QUADRANGLE ELEVATION

New York State Museum Map & Chart No. 109 ISSN:0097-3793; ISBN:978-1-55557-282-2

Geologic mapping by J.Leone, K. Backhaus and C. Porreca, 2016

Digital data and cartography, K. Backhaus, 2019.

UTM GRID AND 2016 MAGNETIC NORTH **DECLINATION AT CENTER OF SHEET**

> This geologic map was funded in part by the National Park Service Task Agreement Number P15AC01482 for the Geologic Mapping in Upper Delaware Scenic and Recreational River Phase 1 in the year 2015. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily presenting the official policies, either expressed or implied, of the U.S. Government.

While every effort has been made to ensure the integrity of this digital map and the factual data upon which it is based, the New York State Education Department ("NYSED") makes no representation or warranty, expressed or implied, with respect to its accuracy, completeness, or usefulness for any particular purpose or scale. NYSED assumes no liability for damages resulting from the use of any information, apparatus, method, or process disclosed in this map and text, and urges independent site-specific verification of the information contained herein. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by