Introduction

Beginning in 1985, the cartographic and mapping project 84GR32/523 was sponsored by the United States Geological Survey, Great Lakes Geomorphology Coordination, the New York State Museum, and the New York State Geological Survey. The purpose of the project was to produce a surficial geology map for each of the 61 quadrangles of New York State, for which surficial geology mapping had been completed. The project was completed in 1988. The maps were published as the "New York State Museum Map and Chart Series," No. 77. The maps were revised and republished as the "New York State Museum Map and Chart Series," No. 77B, in 1998.

Methods

The bedrock topography of the County was produced by digitizing the bedrock topographic contours from the 1:24,000-scale quadrangle maps of Seneca, Seneca, and Wayne Counties, New York. New York State Museum, Map and Chart Series, No. 77. The bedrock topographic contours were adjusted, were then converted into a 2-meter raster using the "Topo to Raster" tool. Throughout this process, the present Lake Ontario basin was excluded as depth to bedrock in the area was not observed.

Discussion

The present map reflects that the southern portion of the county is marked by the claystone deposits of the Pennsylvanian-age. These deposits form a slope with the lower elevations found in the southeast corner of the county. The higher elevations are marked by the resistant sandstone deposits of the Ordovician-age. The gradient is generally northwest-southeast, with the highest elevations occurring in the southeastern portion of the county. The southern portion of the county is characterized by lower elevations occurring near the southeast corner.

The bedrock topography proved consequential to create another derivative map of the county's drift (glacial sediment) thickness. Detailed mapping of Wayne County's bedrock topography was used to create a derivative map of the county's drift (glacial sediment) thickness. The resulting map of bedrock topography proved consequential to create another derivative map of the county's drift (glacial sediment) thickness. The resulting map of bedrock topography proved consequential to create another derivative map of the county's drift (glacial sediment) thickness. The resulting map of bedrock topography proved consequential to create another derivative map of the county's drift (glacial sediment) thickness.