Beginning in 2019, under the guidance and funding provided by the United States Geological Survey - Great Lakes Geological Mapping Coalition (award G20AC00401), the New York State Museum - Geological Survey began a statewide effort to conduct geologic mapping of bedrock elevations throughout New York. Erie County, of Western New York, is bound clockwise by Niagara, Orleans, Genesee, Wyoming, Cattaraugus and Chautauqua Counties. It is also bounded to the west by Lake Erie. Surficial and subsurface bedrock point data and maps were compiled from publicly available sources, vetted, and organized into a comprehensive geospatial database. A technical workflow was developed to categorize the overall geology and differentiate between the underlying bedrock and overlying unconsolidated sediments. The resulting bedrock elevation map provides a detailed representation of bedrock topography across Erie County. This map is useful for various applications, including geological studies, engineering and construction, natural resource management (such as water or mineral resources),

A total of 3,955 bedrock control points were used to delineate bedrock topography in Wyoming County. These points consisted of 2,542 water wells, 1,182 engineering boreholes, 152 waterfall locations and 79 bedrock outcrops. These data were compiled from a variety of public sources and imported into ESRI's ArcMap 10.8 software platform. Ground surface elevations for all control points were extracted from a compilation of three separate digital elevation models (DEM) which were resampled to match a 1-meter LIDAR DEM cell size. Bedrock elevations were calculated at each location by subtracting the depth-to-bedrock from the ground surface elevation. 50-foot bedrock elevation contours were auto-generated and manually refined through a multi-step quality control process to resolve any interpolation errors. The finalized contours were converted into a 1-meter raster, using the "Topo to Raster" tool, that represents county-wide bedrock topography. Lastly, the "Raster Calculator" tool is used to subtract the surface elevation from the bedrock elevation to determine the thickness of the drift

compilation of various surficial and subsurface bedrock data sources, analytical methods, and quality control procedures. The resulting bedrock elevations reveal a range of distinct geological features including a variety of Paleozoic bedrock erosional profiles, and evidence of past glaciation. These characteristics are likely the result of a variety of functions including bedrock stratigraphy, structural deformation, and erosional processes such as past glaciation and fluvial geomorphology. This map is significant for applications in geological research, engineering, natural resource management, and environmental studies. Continued research and work on subsurface geology will provide

DRIFT THICKNESS CONTOUR MAP

New York State Museum Map & Chart No. 190 ISSN:0097-3793 ; ISBN:978-1-55557-444-4