Introduction

Beginning in 2019, under the guidance and funding provided by the United States Geological Survey - Great Lakes Geologic Mapping Coalition (award G20AC00401), the New York State Museum - Geological Survey began a statewide effort to conduct geologic mapping of bedrock elevations throughout New York, Wyoming County, of Western New York, extends from the Central Lowland to the Appalachian Plateau physiographic provinces. The county is nestled between Erie and Livingston counties. Wyoming County is also located along two large bodies of water, Lake Ontario and Oswego Lake. Surficial and subsurface bedrock point data and maps were compiled from publicly available sources, vetted, and organized into a comprehensive geospatial database. A technical workflow was developed to integrate the overall geology and differences between the underlying bedrock and overlying unconsolidated sediments. The resulting bedrock elevation map provides a detailed representation of bedrock topography across Wyoming County. This map is useful for various applications, including geologic studies, engineering and construction, natural resource management (such as water or mineral resources), and environmental studies.

Methodology

A total of 5,401 bedrock control points were used to delineate bedrock topography in Wyoming County. These points consisted of 4,427 bedrock outcrops, 243 water wells, 10 engineering borrows, and 45 well locations and 13 oil and gas wells. These data were compiled from a variety of public sources and imported into ESRI's ArcMap 10.8 software platform. Ground surface elevations for all control points were extracted from a compilation of three separate digital elevation models (DEMs) which were reclassified to match a 5-meter UG-DEM cell size. Bedrock elevations were calculated at each location by subtracting the depth to bedrock from the ground surface elevation. 5-foot bedrock elevation contours were auto-generated and manually refined through a multi-step quality control process to reduce any interpolation errors. The final bedrock contours were converted into a 1-meter raster, using the "Raster Calculator" tool, that represents county-wide bedrock topography. Lastly, the "Raster Calculator" tool is used to subtract the surf ace elevation from the bedrock elevation to determine the thickness of the drift in the county.

Summary

The New York State Museum - Geological Survey has developed a detailed Drift Thickness Map for Wyoming County. This map represents a compilation of various surficial and subsurface bedrock data sources, analytical methods, and quality control procedures. The resulting bedrock elevations reveal a range of distinct geologic features including a variety of Pleistocene bedrock erosional profiles, and evidence of past glaciation. These characteristics are likely the result of a variety of processes including bedrock stratigraphy, structural deformation, and erosional processes such as post-glacial and fluvial geomorphology. This map is significant for applications in geological research, engineering, natural resource management, and environmental studies. Continued research and work on surficial geology will provide additional data and insight and enhance the geologic framework of bedrock geology throughout New York State.