Introduction

Beginning in 2019, under the guidance and funding provided by the United States Geological Survey - Great Lakes Geologic Mapping Coalition (award 03340204-18), the New York State Museum - Geologic Survey began a statewide effort to conduct geologic mapping of bedrock elevations throughout New York. Madison County, part of the geologic province of the Allegheny Plateau and the central lowlands, is in the southern portion of the region. The county is adjacent to Chenango, Cortland, Oneida, Onondaga and Oswego counties. Madison County is also located along the southern shoreline of Oseola Lake. Surficial and subsurface bedrock point data and maps were compiled from publicly available sources, validated, and organized into a comprehensive geospatial database.

The technical workflow was developed to categorize the overall geology and differentiate between the underlying bedrock and overlying unconsolidated sediments. The resulting bedrock elevation map provides a detailed representation of bedrock topography across Madison County.

This map is useful for various applications, including geological studies, engineering and construction, natural resource management (such as water or mineral resources), and environmental studies.

Methodology

A total of 4,411 bedrock control points were used to delineate bedrock topography in Madison County. These points consisted of 3,182 water wells, 1,191 bedrock outcrops, 20 highway engineering borings, 17 water/fall locations, and one oil and gas well. These data were compiled from a variety of public sources and imported into ESR’s ArcGIS 10.8.3 and Pro 3.2.2 software platforms. Ground surface elevations for all control points were extracted from a compilation of three separate digital elevation models (DEM) which were then reclassified to match a 1-meter LiDAR DEM cell size. Bedrock elevations were calculated at each location by subtracting the depth-to-bedrock from the ground surface elevation. 50-foot bedrock elevation contours were auto-generated and manually refined through a multi-step quality control process to remove any interpolation errors. The final contour was converted into a 1-meter raster, using the “Topo to Raster” tool, that represents county-wide bedrock topography. Lastly, the “Raster Calculator” tool is used to subtract the surface elevation from the bedrock elevation to determine the thickness of the drift in the county.

Summary

The New York State Museum – Geological Survey has developed a detailed Bedrock Topography Map for Madison County. This map represents a compilation of various surficial and subsurface bedrock data sources, analytical methods, and quality control procedures. The resulting bedrock elevations reveal a range of district geological features including a variety of Paleozoic bedrock, erosional profiles, and evidence of past glaciation. These characteristics are likely the result of a variety of factors including bedrock stratigraphy, structural deformation, and erosional processes such as past glaciation and fluvial geomorphology. This map is significant for applications in geological research, engineering, natural resource management, and environmental studies. Continued research and work on subsurface geology will provide additional data and insight and enhance the geologic framework of bedrock origins and evolution throughout New York State.