
MAP REFERENCE SOURCES

GEOMORPHIC HISTORY OF NORTHERN NEW YORK

- Buddington, A.F. 1934. Geology and mineral resources of the Hammond, Antwerp and Lowville quadrangles. New York State Mus. Bull. 298, 255p.
- Chambers, T.M. 1978. Late Wisconsinan events of the Ontario ice lobe in the southern and western Tug Hill region, New York, Master's Thesis, Syracuse University, 1190.

- Lovejoy, D. 1988. Reconnaissance mapping. New York State Geol. Sur.
 MacClimock, P. and Stewart, D.P. 1985. Platstocene geology of the St. Lawrence Lowland. New York State Mus. Bull. 394, 152p.

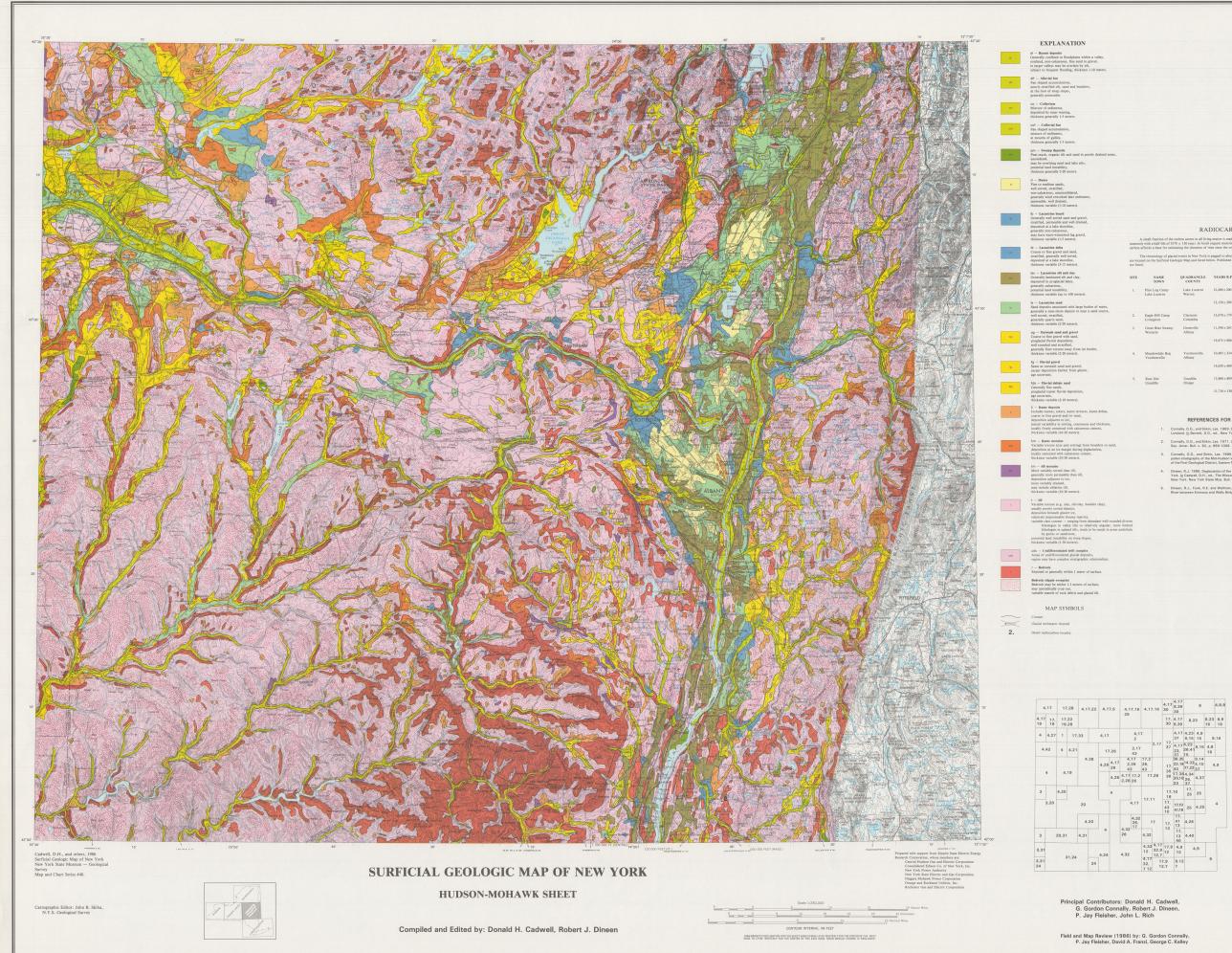
- Miller, T.S. 1980. Surficial geology of part of Boylston Center quadrangle, Oswego County, New York, U.S. Geol. Sur. Water Resources Investigations, Open File 80-1115.

- Miller, T.S. 1980. Surficial geology of part of Ellisburg quadrangle, Oswego County, New York, U.S. Geol, Sur. Water Resources Investigations, Open File 80-9.
- Miller, T.S., and Muller, E.H. 1979. Surficial geology of Pulaski quadrangle, Oovego County, New York, U.S. Geol. Sur. Water Resources Investigations, Open File 79-1343.

 - Waller, R.M. 1976. Surficial geologic map of the Black River Basin, New York, U.S. Geol, Sur. Misc. Field Studies Map, MF-728A.

- Muller, E.H., and Miller, T.S. 1980. Surficial geology of Texas quadrangle, Oswego County, New York. U.S. Geol. Sur. Water Resources Investigations, Open File 80-750.

SURFICIAL GEOLOGIC MAP OF NEW YORK ADIRONDACK SHEET


Compiled and Edited by Donald H. Cadwell, Donald L. Pair

RADIOCARBON DATING

SITE	NAME TOWN	QUADRANGLE COUNTY	YEARS B.P.	LAB	REMARKS: MATERIAL, LOCATION, SIGNIFICANCE	PUBLISHED REFERENCES	SITE	NAME TOWN	QUADRANGLE COUNTY	YEARS B.P.	LAB	REMARKS: MATERIAL, LOCATION, SIGNIFICANCE	PUBLISHED REFERENCES
1	Goose Pond Harrisville	Harrisville St. Lawrence	12,500 ± 140	GSC-4370	wood fragments in gyttja	13, 14	10	Fort Covington Fort Covington	Fort Covington Franklin	10,340 ± 130		shells	8
2	Readway Pond Star Lake	Star Lake St. Lawrence	12,640 ± 430	GX-13278	basal organic matter 7.62-7.72m, kettle lake	4	11	Massena Massena	Massena St. Lawrence	12,000 ± 200		shells	8
3	Sanford Pit Tahawus	Newcomb Essex	>40,000	W-1520	wood fragments and plant material in lake sand and clay, between two tills	9 .	12	Norfolk Norfolk	Norfolk St. Lawrence	11,000 ± 160		shells	8
			>55,000	Y-1715	wood fragments and plant material	10	13	Norfolk Norfolk	Norfolk St. Lawrence	11,225 ± 200		shells	8
4	Norfolk Norfolk	Brasher Falls St. Lawrence	10,350 = 140	Beta-25252	purified collogen from rib of white whale Delphinapterus leucas	17	14	Boyd Pond Degrasse	West Pierrepont St. Lawrence	11,200 = 190	GSC-3429	base of gyttja	2
			10,430 ± 90	Beta-25253	Macoma balthica shells	17	15	Clear Pond Parishville	Rainbow Falls St. Lawrence	12,000 = 200	GSC-4498	organics at base of gyttja 9.7m depth	1
5	Elizabethtown Elizabethtown	Elizabethtown Essex	11,280 ± 110	AA-4935	purified collogen from muskoxen vertebra (Ovibus moschans)	7	16	Dodge Pond Parishville	Rainbow Falls St. Lawrence	12,900 = 210	GSC-4369	organics at base of gyttja	1
			10,720 = 80	AA-5257	humin fraction from vertebra of muskoxen Ovibus moschatus	7	17	Kennon Brook West Plattsburgh	Plattsburgh Clinton	11,800 ± 150	GSC-2366	Macoma balthica shells in silt	6
6	Sparrowhawk Point Sparrowhawk Point	Sparrowhawk Point St. Lawrence	11,900 = 100	GSC 3767	Portlandia arctica shells in massive silt and clay over rhymites.	15, 16	18	Lapham Mills Lapham Mills	Plattsburgh Clinton	11,900 ± 120	GSC-2338	Macoma balthica shells in sand and gravel	6
			11,900 = 140	GSC 3788	Portlandica arctica shells in sand overlying silt and clay	15, 16	19	Norco Plattsburgh	Plattsburgh Clinton	11,665 ± 175	QC-200	Macoma balthica shells in silt and sand	6
7	Westville Center Westville Center	Pt. Covington Franklin	10,630 = 200	WAT-623	Macoma balthica shells in laminated sand	3,5	20	Beekmantown Beekmantown	Rouses Point Clinton	10,300 = 180	QC-199	Mya arenaria shells in clay	6
8	Ogdensbufg Ogdensburg	Ogdensburg St. Lawrence	11,820 = 290	WAT-1190	Macoma baithica shells in massive silt and clay	11, 12	21	Briggs Rd Westville	Fort Covington Franklin	10,970 = 110	WAT-626	Macoma balthica shells in laminated sand	5
9	Lisbon Lisbon	Lisbon St. Lawrence	11,300 = 380	WAT 1361	Macoma batthica shells in stratified beach deposit	11, 12	22	Fort Covington Center Fort Covington Center	Fort Covington Franklin	11,610 = 210	WAT-625	Macoma baithica shells in laminated sand	5

RADIOCARBON DATING

SITE	NAME TOWN	QUADRANGLE COUNTY	YEARS B.P.	LAB	REMARKS: MATERIAL LOCATION, SIGNIFICANCE	PUBLISHED REFERENCES
1.	Pine Log Camp Lake Luzerne	Lake Luzerne Warren	12,400 ± 200	I-3199	Wood fragment in lowest 15 cm of 810 cm core.	I.
			13,150 ± 200	1-4986	Wood fragment in lowest 3 cm of 810 cm core.	2.
2.	Eagle Hill Camp Livingston	Clermont Columbia	13,670 ± 170	S1-4082	Organic materials from swamp, at a depth of 10.25m.	3.
3.	Great Bear Swamp Westerlo	Greenville Albany	11,590 ± 265	QC-149	Organic materials from swamp, at a depth of 340 cm.	4.
			19,875 ± 980	GX-8672	Organic materials from swamp, at a depth of 420 cm.	4.
4.	Meadowdale Bog Voorheesville	Voorheesville Albany	10,485 ± 324	GX-8487	Organic materials from swamp, at a depth of 610 cm.	4.
			16,650 ± 660	GX-8488	Organic materials from swamp, at a depth of 750 cm.	4.
5.	Russ Site Unadilla	Unadilla Otsego	13,860 ± 800	DIC-750	Charcoal, at a depth of 75 cm. in silt.	5.
			11,710 ± 1300	DIC-476	Charcoal, at a depth of 170 cm. in silt.	5.

REFERENCES FOR RADIOCARBON DATA

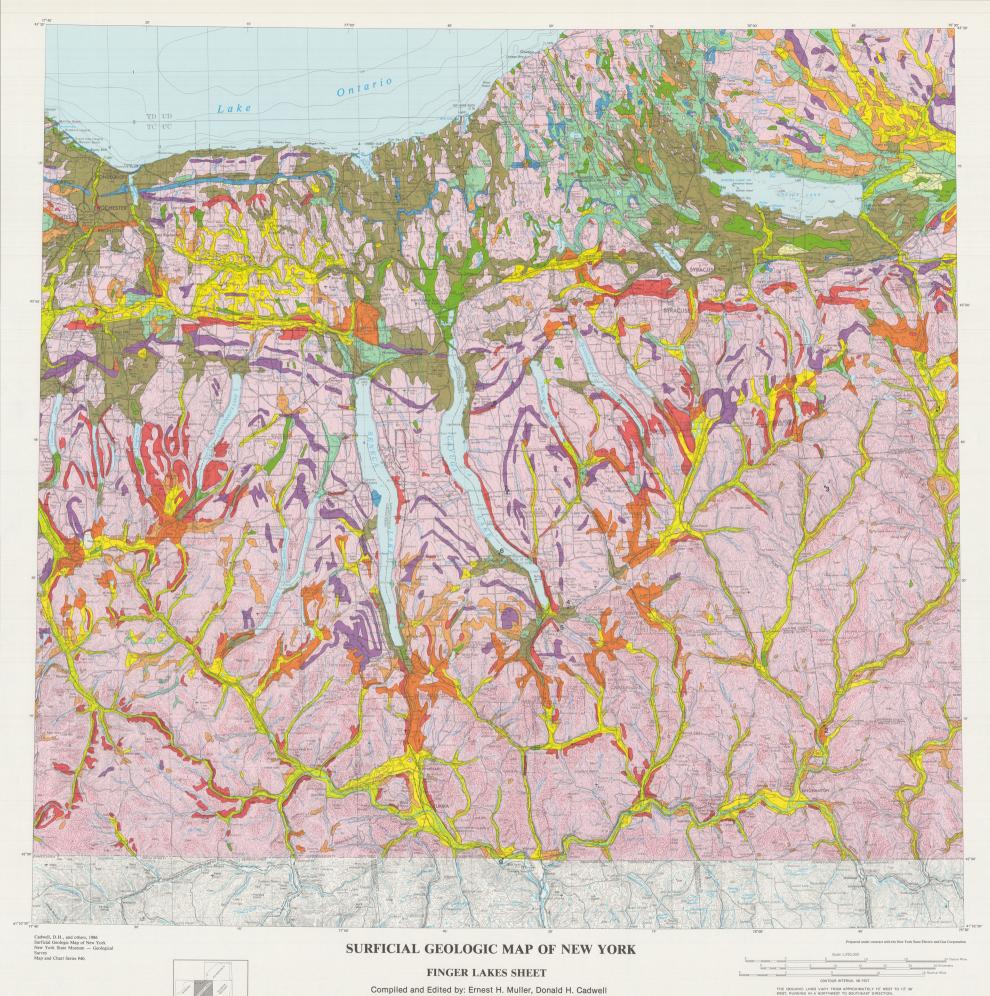
- Connally, G.G., and Sirkin, Les. 1969. Deglecial history of the Lake Champlain-Lake George Lowland. In Barnett, S.G., ed., New York State Geol. Assoc. Guidebook, 20 p.
- Connelly, G.G., and Sirkin, Les. 1971. Luzerne Readvance near Glans Falls, New York. Geol. Soc. Amer. Bull. v. 82, p. 989-1008.

Field and Map Review (1986) by: G. Gordon Connally, P. Jay Fleisher, David A. Franzi, George C. Kelley

- Cannon, R.S. Jr., 1937. Geology of the Piseco Lake Quadrangle. New York State Mus. Bull. 312, 107 p.
- Chadwick, G.H. 1944. Geology of the Catskill and Kaaterskill quadrangles. Part II, Sibrisin and Devonlain geology, with a chapter on glacial geology. New York State Mus. Bull. 336, 251 p.
 Miller, W.J. 1916. Geology of the York State Mus. Bull. 328, 279 p.

- 10. Cook. J.H. 1930. Glacial geology of the Capital District. In Ruedemann, Rudolf, Geology of the Capital District. New York. State Mus. Bull. 289, 139 d. May 189, 189 d. May 189, 189 d. May 189, 189 d. Mus. Bull. 299, 180 p. Mus. Bull. 299, 180 p. May 189, 189 p. May 189 p. May 189, 189 p. May 189, 189 p. May 189, 189 p. May 189
- Cook, J.H. 1942. Glecial geology of the Catakill and Kaaterskill quadrangles. In Ruedemann, Rudolf, Geology of the Catakill and Kaaterskill quadrangles. New York State Mus. Bull. 331, 251 p.

- LaFleur, R.G. 1975-1979. Recons State Geol. Sur.
- 28. Miller, W.J. 1909. Geology of the State Mus. Bull. 126, 51 p.


- Woodworth, J.B. 1905. Ancient water levels of the Hudson an Champlain Valleys. New York State Mus. Bull. 84, 265 p.
- 19. Fairchid, H.L. 1912. The glacial wrates of the Black and Mohawk
 Valleys. New York Grass Mar. Bull. 190, 47 p.

 10. Fleisher, P.J. 1980-1986. Open file maps. New York State Gool.

 Sur.

 Sur

1987

Reconnaissance field review (1985) by: G. Gordon Connally, Richard A. Young 1986

	Name.					
ite	Name, Town	Quadrangle,			Remarks: Material,	Published
e	Iown	County	Years B.P.	Lab	location, significance	References
	Payne Brook	Hamilton	10,990 ± 970	GX-2717	Fragment of jawbone, from	1
	Hamilton	Madison			excavation in floodplain.	
					N. side Payne Brook	
					14. Side Payin Blook	
	Chenango Forks	Chenango Forks	$16,650 \pm 1800$	BGS-86	Organic material from a	1
	Chenango Forks				depth of 31 feet in kettle	
					hole bog, 5 ft above gravel	
	Ouaker Basin	South Otselic	10.930 + 150	GX-206	Organic materials from	2, 3
	Linckaen	Chenango	10,770 2 120	074-200	swamp at a depth of	4, 3
	Linewacii	Circinatigo				
					12.5 - 13.5 ft	
			10,650 ± 300	W-1230	Organic materials from	
					swamp at a depth of	
					11.0 - 12.5 ft	
			10,415 ± 145	GX-205	Organic materials from	
			10,413 ± 143	UA-205		
					swamp at a depth of	
					8.75 - 9.25 ft	
	Fall Creek	Ithaca East	> 35,000	W-504	Organic debris at base of	4, 5, 6
	Ithaca	Tompkins			varyes	
			39,900	1-6046	Twigs at base of varves	
	Sixmile Creek	Ithaca East	41,900	Y-1401	Spruce knot in varyes	7.8
	Ithaca	Tompkins				
	Fernbank	Ludlowville	>50.000	Y-2431		
	Covert		>50,000	Y-2431	Wood at base of gravel,	7, 8, 9
	Covert	Seneca			62 ft above lake	
			> 52,000	Y-1404	Wood in marly sand, 47 ft	
					above lake	
			>54,000	Y-1403	Wood at 28 ft above lake	
			234,000	1-1403	wood at 28 if above lake	
	Colgan Farm	Genoa	11,410 ± 410	Y-460	Spruce wood from basal	10
	Genoa	Cayuga			clay that contained	
					Mammut Americanum	
					remains	
	Great Gully	Union Springs	> 35.000	W-563	Twies in 8 ft thick	6.11
	Ledyard	Cavuga	237,000	111-2003	stratified sand between two	6,11
	Liuyaru	Cayega				
					tills	
	Chemung River	Sayre, PA	13,320 ± 200	Y-2619	Right innominate bone	12
	Athens, PA	Bradford, PA			(pelvic) of Mammut	
					americanus, found 3.5 m	
					below surface of flood-	
					plain, Chemung River	

REFERENCES FOR RADIOCARBON DATES


- Levin, Betsy, Ives, P.C., Oman, C.L., and Rubin, Meyer, 1965, U.S. Geol. Survey Radiocarbon Dates VIII. Radiocarbon v. 7. p. 372-386.

- Muller, E.H., 1957, Filled bedrock gorges in the drainage basin of Cayuga Lake, New York. Geol. Soc. America Bull. 68(12) p. 1771.
- 7. Bloom, A.L., 1972, Friends of the Pleistocene 35th Annual Review Guidebook, 20 p., Cornell
- Maury, C.J., 1908, An interglacial fauna found in Cayuga Valley and its relation to the Pleistoc of Toronto. Jour. Geol. 16:565-567.
- Deevey, E.L., Gratenski, L.J., and Hoffren, Valno, 1999, Yale Natural Radiocarbon Measurements IV. Amer. Jour. Science Radiocarbon Supplement, v. 1, p. 144-172.
- Shumaker, R.C., 1957, Till texture variation and Plaistocene deposits of the Union Springs and Scipio Quadrangles, Cayuga County, N.Y. Unpubl. Master's thesis, Cornell Univ.
- Coates, D.R., Landry, S.O., and Lipe, W.D., 1871, Mastodon bone age and geomorphic relations in the Susquehanna Valley. Geol. Soc. America Bull., v. 82, p. 2005-2010.

GEOMORPHIC HISTORY OF CENTRAL NEW YORK

MAP SYMBOLS

EXPLANATION

MAP REFERENCES

- Alden, W.C. and Fuller, M.L., 1903b, Elkland and Tiega Quadrangles (Pennsylvania). U.S. Geol. Survey Geological Attas Folio 93, 9 p.
 U.S. Geol. Survey Water Resources Investigations, OF 81-336.
- Blagbrough, J.W., 1951, The red clay deposits of Otisco Vatey. Unpub. M.S.
 thesis, Syracuse University.
 22. Muller, E.H., 1990s, Surficial geology of the Brewerton Quadrangle, New
 York. U.S. Geel. Survey Water Resources Investigations 30-402.
- Cadwell, D.H., 1972, Late Wisconsinan deglaciation chronology of the

 23. Multer, E.H., 1980b, Surficial geology of the
 Chenange River Valley and vicinity, N.Y. Ph.D. dissertation, State University
 York, U.S. Geol, Survey Water Resources Inv

- 7. Concally, G. G., 1994, The Almond Monine of the western Finger Lakes
 Region, New York. Urgub. Ph. D. Thesis, Michigan State University, 102 p.
 80. Muller, E.H. and Miller, T.S., 1990a, Surficial geology of the Crevitand
 Osadzingsis, New York. U.S. Gool, Survey Water Resources Investigations DF
 80.70.

- You, Nr. 3 talls Moleman Bul. 30, 17 p. .

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

 30 120.

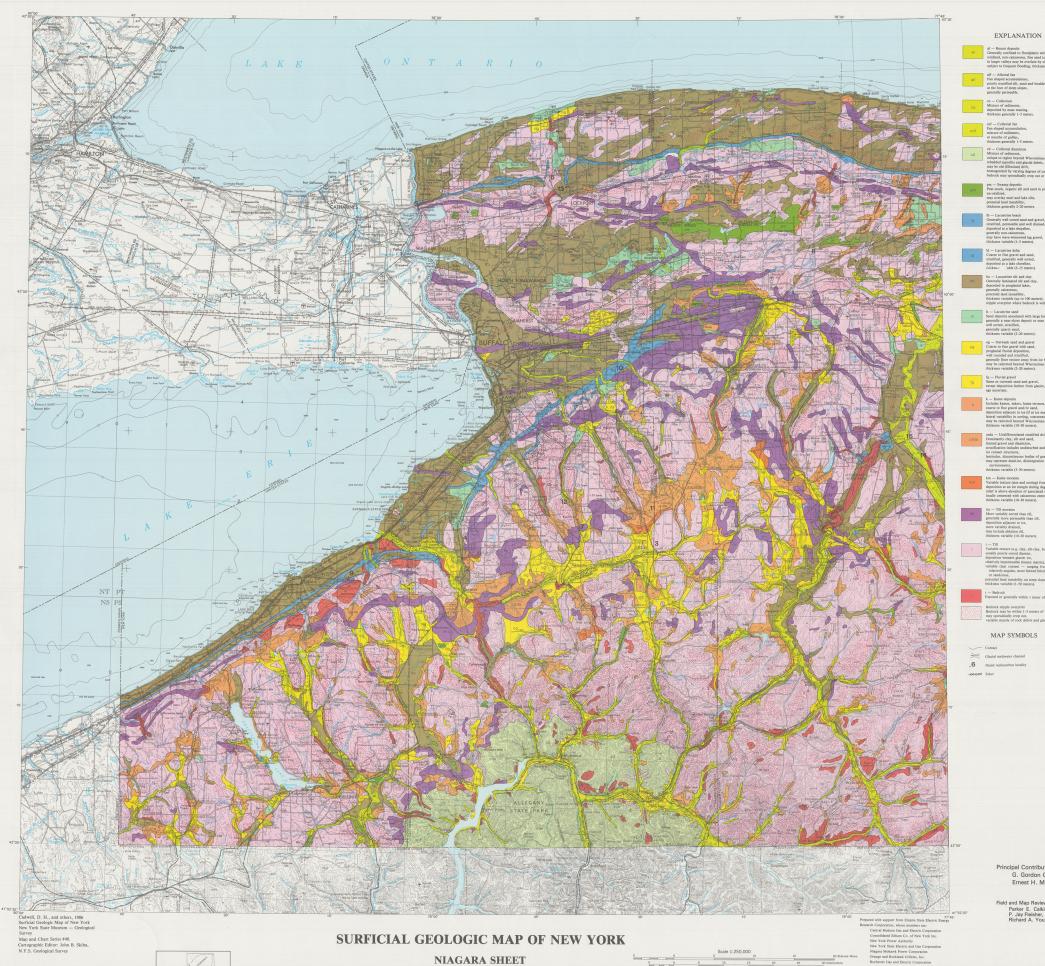
 30 120.

 30 120.

 30 120.

 30 120.

 30 120.


 30 120.

 30 120.

 30 12

- Miller, T.S., 1980c, Surficial geology of the Oswego West Oasdzengle, New York, U.S. Geol, Survey Water Resources Investigations, OF 80-808.
 Survey Water Resources Investigations, OF 80-808.
- Maker, T.S., 1981s, Sortfold glookoy of the Herinde Guadange, New York.
 LS. God: Shrwy Weter Resources Investigations, Of \$1:120.
 LS. God: Shrwy Weter Resources Investigations, Of \$1:120.
 LS. God: Shrwy Weter Resources Investigations, Of \$1:120.
- Miller, T. S., 1981c, Surficial geology of the Westalde Coudeages, New York.
 U.S. God, Shwey Water Resources Investigations, Of 81-174.

Miller, T.S., 1981d, Surficial goology of the Williamstown Quadrangle, New York, U.S. Geol, Survey Water Resources Investigations, OF 81-148.

Compiled and Edited by Donald H. Cadwell

RADIOCARBON DATING

Site	Town	County	Years B.P.	Lab	Location, Significance	Ref
1	Otto Otto	Cattaraugus Cattaraugus	>35,000 >38,000	W-87 W-688	Peat near stream level S. Br. Cattaraugus Ck	19,
			>52,000	GrN-2565 GrN-2632	Carb. silt in gravel beneath lake clay	14,
			63,900 ± 17,000	GrN-2634	Peat beneath gravel	14,
2	Clear Creek Collins	Gowanda Erie	>48,400	GrN-5486	Wood in silty clay 6.5m beneath till	16,
3	Nichols Bk Sardinia	Arcade Erie	11,210 ± 160	I-6023	Wood in marly silt	10
	Saruma	Eine	12,020 ± 300	W-507	Wood in marly silt	10,
			12,800 ± 200	I-5092	Wood in marly silt	10
			13,800 ± 250	I-4043	Marly detritus	3, 10
			14,000 ± 450	I-4216	Marly detritus	3, 10
4	Winter Gulf N. Collins	N. Collins Erie	12,610 ± 200	1-8022	Spruce wood 1.78m below shale shingle	3
			12,730 ± 220	1-3665	Organic detritus in gray clay	3
5	Lewiston Lewiston	Lewiston Niagara	12,080 ± 300 12,660 ± 400	W-861 W-861	Picea twigs in silty clay over till	14,
6	Malloy Newfane	Lockport Niagara	12,100	1-838	Picea wood in lake silt	2, 13
7	Houghton Bog Springville	Concord Erie	11,880 ± 730	1-3290	Peat in kettle	11
8	Byron Byron	Byron Genesee	10,450 ± 400	W-1038	Wood directly beneath Mastodon pelvis	6, 8
9	Sheridan Forestville	Sheridan Chautauqua	9,200 ± 500	M-490	Mastodon rib in lake sand beneath 0.6m muck	4, 5
10	Marilla E. Aurora	Alden Erie	9,640 ± 250	W-199	Wood in lake clay	1, 18
11	Protection Arcade	Holland Erie	9,030 ± 150	1-3550	Peat in kettle	11
12	Colden Colden	Colden Erie	9,745	SI-1328 SI-1329	Twigs near base of lake silt, above till	7
13	The Gulf Lockport	Lockport Niagara	10,920 ± 160	I-5841	Picea wood from base of organics overlying gravel,	
					lake clay and silt in floor of the Gulf	
14	Sonyea Groveland	Sonyea Livingston	8,050 ± 135	1-7527	Woody flotsam 4.6m below top of laminated silts and clays	20
15	Macauley Site Geneseo	Geneseo Livingston	4,745 ± 110	I-6804	Carbonized wood in silt overlying varves	20

REFERENCES FOR RADIOCARBON DATA

- Blackmon, Paul, 1956, Glacial geology of the East Aurora, New York quadrangle. Unpub. M.S. thesis, State University of New York at Buffalo.

- Ives, P.C., Levin, Betsy, Robinson, R.D. and Rubin, Meyer, 1964, U.S. Geol. Sur. Radiocarbon Dates VIII, Radiocarbon v.6, p.31–36.
- Merritt, R.S. and Muller, E.H., 1959, Depth of leaching in a tral New York State. Am. Jour. Sci. v.257, p.465-480.
- Miller, N.G., 1973, The glacial and postglacial vegetation New York State Mus. Bull. 420, 102p.

- 19. Suess, Hans, 1954, U.S. Geol. Sur. Radiocarbon Dates I, Science v.120, p.467-473.
- Young, R.A. and Rhodes, W.D., 1973, Late glocial and postglacial geology of the Genesee Valley in Livingston County, New York. New York State Geol. Assoc. Guidebook, 45th Annual Meeting. p. E1-E17.

1, 12, 17 4, 6, 15,21 4, 6, 4, 5, 10, 10, 15 6, 17 17 19 3, 4, 17 7, 14, 3, 7, 17

Field and Map Review (1987) by: Donald H. Cadwell, Parker E. Calkin, G. Gordon Connally, P. Jay Fleisher, George C. Kelley, Ernest H. Muller, Richard A. Young

GEOMORPHIC HISTORY OF WESTERN NEW YORK

Figure 1. GENERALIZED ICE MARGINS

MAP REFERENCES

- Bartolomucol, H.A., 1968, A sedimentological study of the Niegara Falls Moraine. Unpub. M.A. thesis, State University of New York at Buffelo, 78p.
- 4. Cadwell, D.H., 1987, Open file maps, New York State Geol. Sur.
- 6. Calkin, P.E., 1987, Open file maps, New York State Geol. Sur.
- Connelly, G.G., 1987, Open file maps, New York State Gool, Sur,
 Connelly, G.G., 1994, The Almond Morale of the western Finger Lakes region, New York. Unpub. Ph.D. Dissertation, Michigan State University, 102p.

- 12. Kelley, G.A., 1987, Open file maps, New York State Geol. Sur.
- Kindle, E.M. and Taylor, F.B., 1913, Description of the Nieger U.S. Geol. Sur. Atlas Folio 190, 25p.
- LaFleur, R.G., 1979, Glacial geology of the western New York Nucle Center and vicinity, U.S. Gool. Sur. Open File Report 79-989.

- 18. Muller, E.H., 1987, Open file maps, New York State Geol. Sur.
- Symecko, R.E., 1987, Glacial geology of the Orchard Park, New York quadrangle. Unpub. M.A. thesis, State University of New York at Buffalo,